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Abstract— Plant diseases significant threat to global food security, causing crop yield losses 

every year. Early and accurate pathogen classification such as bacteria, fungi, viruses, pests, and 

healthy plants is crucial for effective disease management. This study proposes a custom 

Convolutional Neural Network (CNN) model that achieved 96.88% test accuracy in pathogen 

classification from leaf images. The custom CNN model compares with pretrained models like 

VGG16 (93.92%), MobileNetV2 (73.42%), and DenseNet121 (86.97%). The model used Batch 

Normalization, Dropout, and L2 regularization to enhance generalization and reduce overfitting 

in the real-world scenario. We used data augmentation such as rotation, zooming, flipping to 

improve model performances. We also used model performance metrics, including precision, 

recall, F1-score, ROC, AUC score, confusion matrix to understand the models evaluation.  
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Introduction 

Plant disease is a significant global threat to agricultural production that negatively affects food 

security and economic stability. Several plant pathogens, such as bacteria, fungi, viruses, etc., are 

the leading causes of crop yield loss worldwide. Plant pathogens infect plants by invading plant 

tissues, and damaging cell structures with toxins and enzymes [1]. Pathogens damage plants by 

causing diseases like blights, necrotic spots in leaves even sometimes plant death, and due to 

pathogen damage total of 16% loss of global crop production [1].  In the early stage accurately 

identifying the disease which pathogen affected is essential for minimizing overall damage. In 

this case, primarily identifying the pathogen classification, such as bacteria, fungi, and viruses, is 

crucial for guiding treatment and the further stages.  

With the advancement of deep learning, we can make the primary pathogen identification 

process easy by using image classification. In this study, we used Convolutional Neural 

Networks (CNNs). In the custom CNN architecture, we used conv2d, maxpooling2d along with 

batch normalization, dropout layers, and L2 regularization to prevent overfitting and improve 

generalization. Also make the dataset efficient and correctly identify the class in the real world 

scenario, we used data augmentation techniques such as rotation, zooming, and flipping. In this 

dataset, the total number of training images was 31997, and the testing and validation images 

were 4000 and 4000 [2].   

In this study, our custom CNN model achieved better accuracy compared with other three 

pretrained models, including VGG16, MobileNetV2, and DenseNet121. Our custom achieved 



96.88% test accuracy. Pretrained model VGG16 achieved 93.92%, MobileNetV2 achieved 

73.42%, and DenseNet121 achieved 86.97% accuracy score. We also used various performance 

evaluation metrics such as precision, recall, F1-score, confusion matrix, ROC score and AUC 

scores. AUC scores confirmed the model’s effectiveness across all five classes, each achieving 

an AUC of 1.00. Overall, this study demonstrates the effectiveness of practical plant disease 

classification 

In this study our key contributions are— 

I.  A custom CNN model designed for pathogen classification. 

II.  Comparative analysis with pretrained models including VGG16, MobileNetV2, and   

DenseNet121. 

Literature Review 

Early detection and classification of pathogen-related plant diseases is crucial for crop 

production damage repair. There are several recent research works focused on plant-pathogen 

image classification by using computer vision techniques. Sladojevic et al. developed a plant 

disease detection system using 13 different plant diseases and a model trained with the Caffe 

deep learning framework that achieved a precision of 96.3% accuracy on average [3]. 

Sivabalaselvamani et al., in their proposed architecture, used image processing, fuzzy clustering, 

and segmentation techniques, and their proposed segmentation achieved 96.74% accuracy [4]. 

Negi et al., proposed a Deep CNN model trained on a large agricultural plant dataset to 

accurately detect and identify leaf diseases and they achieved 96.02% validation accuracy [5]. 

Haridasan et al., proposed system combines image processing, SVM, and CNN to detect and 

classify five rice crop diseases, and they achieved a validation accuracy of 91.45% [6]. Sinha et 

al., used GLCM-based texture features and impact-level classification technique to distinguish 

spot and blight diseases across four plant species, and they achieved 74% accuracy [7]. Wang et 

al., used deep CNN models including VGG16 on apple black rot images, and they achieved 

90.4% accuracy in disease severity classification [8].  

We also explore three different pretrained models to compare with our custom CNN model such 

as VGG16, MobileNetV2, and DenseNet121. The VGG16 paper shows that increasing CNN 

depth to 16-19 layers with small (3×3) convolution filters significantly improves accuracy and 

well performed ImageNet datasets [9].  MobileNetV2 improves mobile model efficiency with 

inverted residual blocks and linear bottlenecks, achieving strong performance in image 

classification [10].  

Methodologies 

In this section, we explore the dataset preprocessing, data augmentation, custom CNN model 

development, training and evaluation using performance metrics. 



A. Data Preprocessing and Augmentation 

In this study, we used a publicly available plant pathogen dataset [2]. In this dataset, there are 

five classes Bacterial, Fungal, Viral, Healthy, and Pest-infected. The dataset contains a total of  

 

Fig. 1. Data Visualization 

 

39997 images in five classes. In the data preprocessing process, we used 80% data for training, 

10% for validation, and 10% data for testing purposes. All images were resized to 150×150 

pixels. To make the dataset better generalization, we used several preprocessing and data 

augmentation techniques. The pixel values are normalized as 0 and 1 range. To overcome model 

overfitting and make the model predict correctly in real world space we use data augmentation 

where applied random rotations (±20°), horizontal and vertical shifts (20%), shear distortion 

(20%), zooming (20%), and horizontal flipping. The coding part was implemented using the 



Kaggle environment with GPU P100 support, utilizing the TensorFlow Keras library for model 

development and training. Figure 1 shows the random images of all 5 classes.  

B. Custom CNN Model Architecture 

We developed deep custom Convolutional Neural Network (CNN) model optimized for 

multiclass classification of plant pathogens. The model was carefully structured to extract 

hierarchical spatial features to ensure better real-world performance. The input of the model was 

RGB images 150 X 150 X 3 and the output layer for five neurons represents 5 classes. In the 

figure 2, shows the custom CNN model architecture where used Conv2d, batch normalization, 

 

 

Fig. 2. Custom CNN Model Architecture 

maxpooling2d, dropout, flatten, and dense layer. In the model there are 7 convolutional layers 

with filter sizes used 32, 64, 64, 128, 128, 256, and 512. Each of the convolutional layers used 

kernel size as 3 X 3, padding same, and activation function ReLU. Along with each of the 

convolutional layer used batch normalization and MaxPooling2D layer. In the MaxPooling2D 

layer used pooling size 2 X 2 to reduce dimensionality and control overfitting. We also used 

dropout layers with 0.25 dropout rate. Then, a flatten layer, 3 fully connected layers, and at the 



end output layer. Each of the fully connected layers used l2 regularization and 256, 128, 32 units. 

Finally, we used output layer for 5 classes.  

C. Evaluation Metrics 

To ensure the performance in our custom CNN model, we used multiple evaluations. The 

evaluation metrics include precision, recall, f1-score, confusion matrix, ROC curve, and AUC 

score.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
𝑇𝑃

𝑇𝑃+𝐹𝑃 
……………………......…...…….(1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
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Here equation 1 and 2 shows the equation of precision and recall, where TP means true positive, 

FP means false positive, FN means false negative.  

Experimental Results 

We used 32 batch sizes, optimizer as Adamax with 0.001 learning rates, and categorical cross 

entropy as loss function. After that, train the model. The results confirm the effectiveness, 

robustness, and practicality of the proposed approach. First of all, in the classification report, the 

model achieved overall 96.88% test accuracy. The model also shows 97.25% train and 96.37% 

validation accuracy. In the table I is represent classification report, where the model shows 

strong classification capability across all classes. The model shows highest F1-score in the fungi 

class which is 99% and the lowest for the pests class which is 95%. Also the model shows 

precision score highest 100% for fungi 99% for bacteria, and 99% for viruses.  

Table I: Classification Report 

 Precision Recall F1-score 

Bacteria 0.99 0.98 0.98 

Fungi 1.00 0.97 0.99 

Healthy 0.95 0.97 0.96 

Pests 0.93 0.97 0.95 

Virus 0.99 0.97 0.98 

accuracy   0.97 

 

Figure 3, shows the confusion matrix provides models predictive performances of all 5 classes. 

The diagonal elements indicate correct predictions each of the class. It shows that, bacteria class 

correctly identifies 784 out of 800 and 16 shows minor misclassifications. Also correctly identify 

780 in fungi and healthy and 773 correctly identify in pests and virus classes out of 800 samples. 

Overall, total shows 110 misclassification from 4000 samples and 3890 samples correctly 

identify the model.  



 

Fig. 3. Confusion Matrix 

 

Figure 5 shows, the Receiver Operating Characteristic (ROC) curves and corresponding Area 

Under the Curve (AUC) scores were computed for all five target classes. The ROC curve shows 

the model ability to distinguish between the classes across varying threshold values. ROC curve 

shows true and false positive rate. In the ROC curve the top-left corner, indicating near-perfect 

separability across all classes. In the ROC curve figure also represent the AUC scores where 

each of the classes AUC score is 1.00. This perfect AUC score signifies that the proposed CNN 

model consistently achieves high true positive rates while maintaining low false positive rates 

across all classes.  



 

Fig. 4. ROC Curve and AUC Score 

The custom CNN model outperformed all three pretrained models in accuracy, achieving 

96.88%, compared to 93.92% for VGG16, 86.97% for DenseNet121, and 73.42% for 

MobileNetV2. While VGG16 showed strong performance, it still slightly behind the custom 

model. MobileNetV2, designed for lightweight tasks, was the least accurate in this context. 

Overall, the results show that a well-designed custom CNN can be more effective for specific 

tasks like plant pathogen classification. 

Table II: Comparative Analysis 

Model Name Accuracy Score 

VGG16 93.92 

MobileNetV2 73.42 

DenseNet121 86.97 

Custom CNN Model 96.88 

 

Conclusion 

In this study, we developed a custom CNN model to help identify plant diseases caused by 

bacteria, fungi, viruses, pests, and also to recognize healthy plants. The model was designed to 

work well in real-world situations and showed excellent results, achieving 96.88% test accuracy. 

It even outperformed well-known pretrained models like VGG16, DenseNet121, and 

MobileNetV2. 



We used smart techniques like data augmentation, batch normalization, dropout, and L2 

regularization to improve the model’s ability to generalize and avoid overfitting. Evaluation 

metrics, including precision, recall, F1-score, and AUC, showed that our model was consistent 

and highly reliable. Overall, our custom CNN model offers a powerful solution for early and 

accurate plant disease detection.  
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